/* * (C) 2004 - Geotechnical Software Services * * This code is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; either * version 2.1 of the License, or (at your option) any later version. * * This code is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with this program; if not, write to the Free * Software Foundation, Inc., 59 Temple Place - Suite 330, Boston, * MA 02111-1307, USA. */ package no.geosoft.cc.geometry; /** * A <em>Region</em> is simply an area, as the name implies, and is * implemented as a so called "y-x-banded" array of rectangles; Each Region * is made up of a certain number of rectangles sorted by y coordinate first, * and then by x coordinate. * <p> * Furthermore, the rectangles are banded such that every rectangle with a * given upper-left y coordinate (y1) will have the same lower-right y * coordinate (y2) and vice versa. If a rectangle has scanlines in a band, * it will span the entire vertical distance of the band. This means that * some areas that could be merged into a taller rectangle will be represented * as several shorter rectangles to account for shorter rectangles to its * left or right but within its "vertical scope". * <p> * An added constraint on the rectangles is that they must cover as much * horizontal area as possible. E.g. no two rectangles in a band are allowed * to touch. Whenever possible, bands will be merged together to cover a * greater vertical distance (and thus reduce the number of rectangles). * Two bands can be merged only if the bottom of one touches the top of the * other and they have rectangles in the same places (of the same width, of * course). This maintains the y-x-banding. * <p> * Region operations includes add (union), subtract, intersect, and * exclusive-or. * <p> * This class corresponds to Region.c of the X11 distribution and the * implemntation is based on it. * <p> * The <em>Region</em> is essentially equivalent to an AWT <em>Area</em> * but with different back-end implementation. Becnhmarking proves it more * than 100 times faster than AWT Area for binary CAG operations, * <p> * Thanks to: * <ul> * <li>Bryan Lin @ China Minmetals Corporation - for identifying * synchronization errors when run on the MS WindowsXP platform. * <li>Maxim Butov @ Belhard - for identifying error in the * isInside(Rect) method. * </ul> * * @author <a href="mailto:info@geosoft.no">GeoSoft</a> */ public class Region implements Cloneable { private static final int OPERATION_UNION = 0; private static final int OPERATION_INTERSECTION = 1; private static final int OPERATION_SUBTRACTION = 2; private static final int OPERATION_XOR = 3; private static final int INITIAL_SIZE = 40; // 10 rectangles // Temporary working area common for all regions for maximum performance private static int gRectangles_[] = new int[INITIAL_SIZE]; private static int gNRectangles_ = 0; private static boolean isLocked_ = false; private Box extent_; private int rectangles_[]; // y0,y1,x0,x1,..... private int nRectangles_; /** * Create an empty region. Corresponds to XCreateRegion of X11. */ public Region() { extent_ = new Box (0, 0, 0, 0); rectangles_ = new int[INITIAL_SIZE]; nRectangles_ = 0; } /** * Create the region covering the (possibly complex) polygon specified * by the x and y parameters. * Corresponds to XPolygonRegion of X11. * * @param x X values of polygon vertices. * @param y Y values of polygon vertices. */ public Region (int x[], int y[]) { // TODO. See PolyReg.c of X11. } /** * Create a region constituting of a single rectangle as specified. * * @param rectangle Rectangle to create region from. */ public Region (Rect rectangle) { this(); set (rectangle); } /** * Create a region consisting of one rectangle as specified. * * @param x X position of upper left corner of rectangle. * @param y Y position of upper left corner of rectangle. * @param width Width of rectangle. * @param height Height of rectangle. */ public Region (int x, int y, int width, int height) { this (new Rect (x, y, width, height)); } /** * Create a region consisting of one rectangle as specified. * * @param box Box specification of rectangle to create region from. */ public Region (Box box) { this (new Rect (box)); } /** * Create a region as a copy of the specified region. * * @param region Region to copy. */ public Region (Region region) { extent_ = new Box(); rectangles_ = new int[region.nRectangles_ << 2]; set (region); } /** * Clone this region. * * @return Clone of this region. */ public Object clone() { return new Region (this); } /** * Convert this region to an AWT Area. * <p> * Note: The AWT classes are referenced explicitly here rather tham * importing them to indicate that the Region implementation does not * dependent on the AWT. * * @return Area equivalent of this rectangle. */ public java.awt.geom.Area createArea() { if (nRectangles_ == 0) return null; java.awt.Rectangle rectangle = new java.awt.Rectangle (rectangles_[2], rectangles_[0], rectangles_[3] - rectangles_[2], rectangles_[1] - rectangles_[0]); java.awt.geom.Area area = new java.awt.geom.Area (rectangle); for (int i = 1; i < nRectangles_; i++) { int j = i * 4; rectangle = new java.awt.Rectangle (rectangles_[j+2], rectangles_[j+0], rectangles_[j+3] - rectangles_[j+2], rectangles_[j+1] - rectangles_[j+0]); area.add (new java.awt.geom.Area (rectangle)); } return area; } private static void checkMemory (Region region, int nRectangles) { int nEntries = nRectangles << 2; if (region == null) { if (gRectangles_.length < nEntries) { int newSize = nEntries * 2; int newArray[] = new int[newSize]; System.arraycopy (gRectangles_, 0, newArray, 0, gRectangles_.length); gRectangles_ = newArray; } } else { if (region.rectangles_.length < nEntries) { int newSize = nEntries * 2; int newArray[] = new int[newSize]; System.arraycopy (region.rectangles_, 0, newArray, 0, region.rectangles_.length); region.rectangles_ = newArray; } } } /** * Set the content of this region according to the specified * region. * * @param region Region to copy. */ public void set (Region region) { extent_.copy (region.extent_); checkMemory (this, region.nRectangles_); System.arraycopy (region.rectangles_, 0, rectangles_, 0, region.nRectangles_ << 2); nRectangles_ = region.nRectangles_; } /** * Set the content of this region according to the specified * rectangle. * * @param rectangle Rectangle to set region according to. */ public void set (Rect rectangle) { rectangles_ = new int[INITIAL_SIZE]; if (rectangle.isEmpty()) { extent_ = new Box(); nRectangles_ = 0; } else { extent_ = new Box (rectangle); rectangles_[0] = extent_.y1; rectangles_[1] = extent_.y2; rectangles_[2] = extent_.x1; rectangles_[3] = extent_.x2; nRectangles_ = 1; } } /** * Clear the region. */ public void clear() { nRectangles_ = 0; extent_.set (0, 0, 0, 0); } /** * Return true if this region equals the specified object. * Corrensponds to XEqualRegion of X11. * * @param object Object to check against. * @return True if the two regions equals, false otherwise. * @throws ClassCastException if object is not of type Region. */ public boolean equals (Object object) { Region region = (Region) object; if (nRectangles_ != region.nRectangles_) return false; else if (nRectangles_ == 0) return true; else if (extent_.x1 != region.extent_.x1) return false; else if (extent_.x2 != region.extent_.x2) return false; else if (extent_.y1 != region.extent_.y1) return false; else if (extent_.y2 != region.extent_.y2) return false; else { for (int i = 0; i < nRectangles_ << 2; i++) if (rectangles_[i] != region.rectangles_[i]) return false; } return true; } /** * Return true if the region is empty. Corresponds to XEmptyRegion in X11. * * @return True if the region is empty, false otherwise. */ public boolean isEmpty() { return nRectangles_ == 0; } /** * Offset the entire region a specified distance. * Corresponds to XOffsetRegion in X11. * * @param dx Offset in x direction. * @param dy Offset in y direction. */ public void offset (int dx, int dy) { for (int i = 0; i < rectangles_.length; i+=4) { rectangles_[i+0] += dy; rectangles_[i+1] += dy; rectangles_[i+2] += dx; rectangles_[i+3] += dx; } extent_.offset (dx, dy); } /** * Return true if the specified region intersect this region. * * @param region Region to check against. * @return True if the region intersects this one, false otherwise. */ public boolean isIntersecting (Region region) { Region r = (Region) clone(); r.intersect (region); return !r.isEmpty(); } /** * Return true if the specified rectangle intersect this region. * * @param rectangle Rectangle to check against. * @return True if the rectangle intersects this, false otherwise. */ public boolean isIntersecting (Rect rectangle) { Region region = new Region (rectangle); return isIntersecting (region); } /** * Return true if the specified point is inside this region. * This method corresponds to XPointInRegion in X11. * * @param x X part of point to check. * @param y Y part of point to check. * @return True if the point is inside the region, false otherwise. */ public boolean isInside (int x, int y) { if (isEmpty()) return false; if (!extent_.isInside (x, y)) return false; int rEnd = nRectangles_ << 2; // Find correct band int i = 0; while (i < rEnd && rectangles_[i+1] < y) { if (rectangles_[i] > y) return false; // Passed the band i += 4; } // Check each rectangle in the band while (i < rEnd && rectangles_[i] <= y) { if (x >= rectangles_[i+2] && x < rectangles_[i+3]) return true; i += 4; } return false; } /** * Return true if the specified rectangle is inside this region. * This method corresponds to XRectInRegion in X11. * * @param rectangle Rectangle to check. * @return True if the rectangle is inside this region, * false otherwise. */ public boolean isInside (Rect rectangle) { // Trivial reject case 1 if (isEmpty() || rectangle.isEmpty()) return false; // Trivial reject case 2 if (!extent_.isOverlapping (rectangle)) return false; int x1 = rectangle.x; int x2 = rectangle.x + rectangle.width; int y1 = rectangle.y; int y2 = rectangle.y + rectangle.height; int rEnd = nRectangles_ << 2; // Trivial reject case 3 if (rectangles_[0] > y1) return false; // Loop to start band int i = 0; while (i < rEnd && rectangles_[i+1] <= y1) { i += 4; if (rectangles_[i] > y1) return false; } while (i < rEnd) { int yTop = rectangles_[i]; int yBottom = rectangles_[i+1]; // Find start rectangle within band while (i < rEnd && rectangles_[i+3] <= x1) { i += 4; if (rectangles_[i] > yTop) return false; // Passed the band } if (i == rEnd) return false; // This rectangle must cover the entire rectangle horizontally if (x1 < rectangles_[i+2] || x2 > rectangles_[i+3]) return false; // See if we are done if (rectangles_[i+1] >= y2) return true; // Move to next band i += 4; while (i < rEnd && rectangles_[i] == yTop) i += 4; if (i == rEnd) return false; if (rectangles_[i] > yBottom) return false; } return false; } /** * Return true if this region is inside of the specified rectangle. * * @param rectangle Rectangle to check if this is inside of. * @return True if this region is inside the specified rectangle, * false otherwise. */ public boolean isInsideOf (Rect rectangle) { return subtract (this, rectangle).isEmpty(); } /** * Return the extent of the region. * Correspond to XClipBox in X11. * * @return The extent of this region. */ public Rect getExtent() { return new Rect (extent_); } /** * Return the number of rectangles in the region. In case the number * is getting very high, the application might choose to call collapse(). * * @return Number of rectangles this region consists of. */ public int getNRectangles() { return nRectangles_; } /** * Collapse the region into its extent box. Useful if the region becomes * very complex (number of rectangles is getting high) and the client * accepts the (in general) coarser result region. */ public void collapse() { rectangles_[0] = extent_.y1; rectangles_[1] = extent_.y2; rectangles_[2] = extent_.x1; rectangles_[3] = extent_.x2; nRectangles_ = 1; } /** * Perform a logical set operation between this and the specified * region. Corresponds to miRegionOp in Region.c of X11. * * @param region Region to combine with. * @param operationType Combination operator. */ private void combine (Region region, int operationType) { // This is the only method (with sub methods) that utilize the // common working area gRectangles_. The lock ensures that only // one thread access this variable at any time. while (isLocked_); isLocked_ = true; int r1 = 0; int r2 = 0; int r1End = nRectangles_ << 2; int r2End = region.nRectangles_ << 2; // Initialize the working region gNRectangles_ = 0; int yTop = 0; int yBottom = extent_.y1 < region.extent_.y1 ? extent_.y1 : region.extent_.y1; int previousBand = 0; int currentBand; int r1BandEnd, r2BandEnd; int top, bottom; // Main loop do { currentBand = gNRectangles_; // Find end of the current r1 band r1BandEnd = r1 + 4; while (r1BandEnd != r1End && rectangles_[r1BandEnd] == rectangles_[r1]) r1BandEnd += 4; // Find end of the current r2 band r2BandEnd = r2 + 4; while (r2BandEnd != r2End && region.rectangles_[r2BandEnd] == region.rectangles_[r2]) r2BandEnd += 4; // First handle non-intersection band if any if (rectangles_[r1] < region.rectangles_[r2]) { top = Math.max (rectangles_[r1], yBottom); bottom = Math.min (rectangles_[r1+1], region.rectangles_[r2]); if (top != bottom) nonOverlap1 (rectangles_, r1, r1BandEnd, top, bottom, operationType); yTop = region.rectangles_[r2]; } else if (region.rectangles_[r2] < rectangles_[r1]) { top = Math.max (region.rectangles_[r2], yBottom); bottom = Math.min (region.rectangles_[r2+1], rectangles_[r1]); if (top != bottom) nonOverlap2 (region.rectangles_, r2, r2BandEnd, top, bottom, operationType); yTop = rectangles_[r1]; } else yTop = rectangles_[r1]; // Then coalesce if possible if (gNRectangles_ != currentBand) previousBand = coalesceBands (previousBand, currentBand); currentBand = gNRectangles_; // Check if this is an intersecting band yBottom = Math.min (rectangles_[r1+1], region.rectangles_[r2+1]); if (yBottom > yTop) overlap (rectangles_, r1, r1BandEnd, region.rectangles_, r2, r2BandEnd, yTop, yBottom, operationType); // Coalesce again if (gNRectangles_ != currentBand) previousBand = coalesceBands (previousBand, currentBand); // If we're done with a band, skip forward in the region to the next band if (rectangles_[r1+1] == yBottom) r1 = r1BandEnd; if (region.rectangles_[r2+1] == yBottom) r2 = r2BandEnd; } while (r1 != r1End && r2 != r2End); currentBand = gNRectangles_; // // Deal with whichever region still has rectangles left // if (r1 != r1End) { do { r1BandEnd = r1; while (r1BandEnd < r1End && rectangles_[r1BandEnd] == rectangles_[r1]) r1BandEnd += 4; top = Math.max (rectangles_[r1], yBottom); bottom = rectangles_[r1+1]; nonOverlap1 (rectangles_, r1, r1BandEnd, top, bottom, operationType); r1 = r1BandEnd; } while (r1 != r1End); } else if (r2 != r2End) { do { r2BandEnd = r2; while (r2BandEnd < r2End && region.rectangles_[r2BandEnd] == region.rectangles_[r2]) r2BandEnd += 4; top = Math.max (region.rectangles_[r2], yBottom); bottom = region.rectangles_[r2+1]; nonOverlap2 (region.rectangles_, r2, r2BandEnd, top, bottom, operationType); r2 = r2BandEnd; } while (r2 != r2End); } // Coalesce again if (currentBand != gNRectangles_) coalesceBands (previousBand, currentBand); // Copy the work region into this checkMemory (this, gNRectangles_); System.arraycopy (gRectangles_, 0, rectangles_, 0, gNRectangles_ << 2); nRectangles_ = gNRectangles_; isLocked_ = false; } private void nonOverlap1 (int rectangles[], int r, int rEnd, int yTop, int yBottom, int operationType) { int i = gNRectangles_ << 2; if (operationType == OPERATION_UNION || operationType == OPERATION_SUBTRACTION) { while (r != rEnd) { checkMemory (null, gNRectangles_ + 1); gRectangles_[i] = yTop; i++; gRectangles_[i] = yBottom; i++; gRectangles_[i] = rectangles[r+2]; i++; gRectangles_[i] = rectangles[r+3]; i++; gNRectangles_++; r += 4; } } } private void nonOverlap2 (int rectangles[], int r, int rEnd, int yTop, int yBottom, int operationType) { int i = gNRectangles_ << 2; if (operationType == OPERATION_UNION) { while (r != rEnd) { checkMemory (null, gNRectangles_ + 1); gRectangles_[i] = yTop; i++; gRectangles_[i] = yBottom; i++; gRectangles_[i] = rectangles[r+2]; i++; gRectangles_[i] = rectangles[r+3]; i++; gNRectangles_++; r += 4; } } } private void overlap (int rectangles1[], int r1, int r1End, int rectangles2[], int r2, int r2End, int yTop, int yBottom, int operationType) { int i = gNRectangles_ << 2; // // UNION // if (operationType == OPERATION_UNION) { while (r1 != r1End && r2 != r2End) { if (rectangles1[r1+2] < rectangles2[r2+2]) { if (gNRectangles_ > 0 && gRectangles_[i-4] == yTop && gRectangles_[i-3] == yBottom && gRectangles_[i-1] >= rectangles1[r1+2]) { if (gRectangles_[i-1] < rectangles1[r1+3]) gRectangles_[i-1] = rectangles1[r1+3]; } else { checkMemory (null, gNRectangles_ + 1); gRectangles_[i] = yTop; gRectangles_[i+1] = yBottom; gRectangles_[i+2] = rectangles1[r1+2]; gRectangles_[i+3] = rectangles1[r1+3]; i += 4; gNRectangles_++; } r1 += 4; } else { if (gNRectangles_ > 0 && gRectangles_[i-4] == yTop && gRectangles_[i-3] == yBottom && gRectangles_[i-1] >= rectangles2[r2+2]) { if (gRectangles_[i-1] < rectangles2[r2+3]) gRectangles_[i-1] = rectangles2[r2+3]; } else { checkMemory (null, gNRectangles_ + 1); gRectangles_[i] = yTop; gRectangles_[i+1] = yBottom; gRectangles_[i+2] = rectangles2[r2+2]; gRectangles_[i+3] = rectangles2[r2+3]; i += 4; gNRectangles_++; } r2 += 4; } } if (r1 != r1End) { do { if (gNRectangles_ > 0 && gRectangles_[i-4] == yTop && gRectangles_[i-3] == yBottom && gRectangles_[i-1] >= rectangles1[r1+2]) { if (gRectangles_[i-1] < rectangles1[r1+3]) gRectangles_[i-1] = rectangles1[r1+3]; } else { checkMemory (null, gNRectangles_ + 1); gRectangles_[i] = yTop; gRectangles_[i+1] = yBottom; gRectangles_[i+2] = rectangles1[r1+2]; gRectangles_[i+3] = rectangles1[r1+3]; i += 4; gNRectangles_++; } r1 += 4; } while (r1 != r1End); } else { while (r2 != r2End) { if (gNRectangles_ > 0 && gRectangles_[i-4] == yTop && gRectangles_[i-3] == yBottom && gRectangles_[i-1] >= rectangles2[r2+2]) { if (gRectangles_[i-1] < rectangles2[r2+3]) gRectangles_[i-1] = rectangles2[r2+3]; } else { checkMemory (null, gNRectangles_ + 1); gRectangles_[i] = yTop; gRectangles_[i+1] = yBottom; gRectangles_[i+2] = rectangles2[r2+2]; gRectangles_[i+3] = rectangles2[r2+3]; i += 4; gNRectangles_++; } r2 += 4; } } } // // SUBTRACT // else if (operationType == OPERATION_SUBTRACTION) { int x1 = rectangles1[r1+2]; while (r1 != r1End && r2 != r2End) { if (rectangles2[r2+3] <= x1) r2 += 4; else if (rectangles2[r2+2] <= x1) { x1 = rectangles2[r2+3]; if (x1 >= rectangles1[r1+3]) { r1 += 4; if (r1 != r1End) x1 = rectangles1[r1+2]; } else r2 += 4; } else if (rectangles2[r2+2] < rectangles1[r1+3]) { checkMemory (null, gNRectangles_ + 1); gRectangles_[i+0] = yTop; gRectangles_[i+1] = yBottom; gRectangles_[i+2] = x1; gRectangles_[i+3] = rectangles2[r2+2]; i += 4; gNRectangles_++; x1 = rectangles2[r2+3]; if (x1 >= rectangles1[r1+3]) { r1 += 4; if (r1 != r1End) x1 = rectangles1[r1+2]; else r2 += 4; } } else { if (rectangles1[r1+3] > x1) { checkMemory (null, gNRectangles_ + 1); gRectangles_[i+0] = yTop; gRectangles_[i+1] = yBottom; gRectangles_[i+2] = x1; gRectangles_[i+3] = rectangles1[r1+3]; i += 4; gNRectangles_++; } r1 += 4; if (r1 != r1End) x1 = rectangles1[r1+2]; } } while (r1 != r1End) { checkMemory (null, gNRectangles_ + 1); gRectangles_[i+0] = yTop; gRectangles_[i+1] = yBottom; gRectangles_[i+2] = x1; gRectangles_[i+3] = rectangles1[r1+3]; i += 4; gNRectangles_++; r1 += 4; if (r1 != r1End) x1 = rectangles1[r1+2]; } } // // INTERSECT // else if (operationType == OPERATION_INTERSECTION) { while (r1 != r1End && r2 != r2End) { int x1 = Math.max (rectangles1[r1+2], rectangles2[r2+2]); int x2 = Math.min (rectangles1[r1+3], rectangles2[r2+3]); if (x1 < x2) { checkMemory (null, gNRectangles_ + 1); gRectangles_[i] = yTop; gRectangles_[i+1] = yBottom; gRectangles_[i+2] = x1; gRectangles_[i+3] = x2; i += 4; gNRectangles_++; } if (rectangles1[r1+3] < rectangles2[r2+3]) r1 += 4; else if (rectangles2[r2+3] < rectangles1[r1+3]) r2 += 4; else { r1 += 4; r2 += 4; } } } } /** * Corresponds to miCoalesce in Region.c of X11. */ private int coalesceBands (int previousBand, int currentBand) { int r1 = previousBand << 2; int r2 = currentBand << 2; int rEnd = gNRectangles_ << 2; // Number of rectangles in prevoius band int nRectanglesInPreviousBand = currentBand - previousBand; // Number of rectangles in current band int nRectanglesInCurrentBand = 0; int r = r2; int y = gRectangles_[r2]; while (r != rEnd && gRectangles_[r] == y) { nRectanglesInCurrentBand++; r += 4; } // If more than one band was added, we have to find the start // of the last band added so the next coalescing job can start // at the right place. if (r != rEnd) { rEnd -= 4; while (gRectangles_[rEnd-4] == gRectangles_[rEnd]) rEnd -= 4; currentBand = rEnd >> 2 - gNRectangles_; rEnd = gNRectangles_ << 2; } if (nRectanglesInCurrentBand == nRectanglesInPreviousBand && nRectanglesInCurrentBand != 0) { // The bands may only be coalesced if the bottom of the previous // band matches the top of the current. if (gRectangles_[r1+1] == gRectangles_[r2]) { // Chek that the bands have boxes in the same places do { if ((gRectangles_[r1+2] != gRectangles_[r2+2]) || (gRectangles_[r1+3] != gRectangles_[r2+3])) return currentBand; // No coalescing r1 += 4; r2 += 4; nRectanglesInPreviousBand--; } while (nRectanglesInPreviousBand != 0); // // OK, the band can be coalesced // // Adjust number of rectangles and set pointers back to start gNRectangles_ -= nRectanglesInCurrentBand; r1 -= nRectanglesInCurrentBand << 2; r2 -= nRectanglesInCurrentBand << 2; // Do the merge do { gRectangles_[r1+1] = gRectangles_[r2+1]; r1 += 4; r2 += 4; nRectanglesInCurrentBand--; } while (nRectanglesInCurrentBand != 0); // If only one band was added we back up the current pointer if (r2 == rEnd) currentBand = previousBand; else { do { gRectangles_[r1] = gRectangles_[r2]; r1++; r2++; } while (r2 != rEnd); } } } return currentBand; } /** * Update region extent based on rectangle values. */ private void updateExtent() { if (nRectangles_ == 0) extent_.set (0, 0, 0, 0); else { // Y values extent_.y1 = rectangles_[0]; extent_.y2 = rectangles_[(nRectangles_ << 2) - 3]; // X values initialize extent_.x1 = rectangles_[2]; extent_.x2 = rectangles_[3]; // Scan all rectangles for extreme X values for (int i = 4; i < nRectangles_ << 2; i += 4) { if (rectangles_[i+2] < extent_.x1) extent_.x1 = rectangles_[i+2]; if (rectangles_[i+3] > extent_.x2) extent_.x2 = rectangles_[i+3]; } } } /** * Union this region with the specified region. * Corresponds to XUnionRegion in X11. * * @param region Region to union this with. */ public void union (Region region) { // Trivial case #1. Region is this or empty if (this == region || region.isEmpty()) return; // Trivial case #2. This is empty if (isEmpty()) { set (region); return; } // Trivial case #3. This region covers the specified one if (rectangles_.length == 1 && region.extent_.isInsideOf (extent_)) return; // Trivial case #4. The specified region covers this one if (region.rectangles_.length == 1 && extent_.isInsideOf (region.extent_)) { set (region); return; } // Ceneral case combine (region, OPERATION_UNION); // Update extent extent_.x1 = Math.min (extent_.x1, region.extent_.x1); extent_.y1 = Math.min (extent_.y1, region.extent_.y1); extent_.x2 = Math.max (extent_.x2, region.extent_.x2); extent_.y2 = Math.max (extent_.y2, region.extent_.y2); } /** * Union this region with the specified rectangle. * Corresponds to XUnionRectWithRegion in X11. * * @param rectangle Rectangle to union this with. */ public void union (Rect rectangle) { if (rectangle.isEmpty()) return; union (new Region (rectangle)); } /** * Create a new region as the union between two specified regions. * * @param r1 First region to union. * @param r2 Second region to union. * @return Union of the two specified regions. */ public static Region union (Region r1, Region r2) { Region region = new Region (r1); region.union (r2); return region; } /** * Create a new region as the union between a region and a rectangle. * * @param region Region to union. * @param rectangle Rectangle to intersect with. * @return Union of the region and the rectangle. */ public static Region union (Region region, Rect rectangle) { if (rectangle.isEmpty()) return new Region (region); else return union (region, new Region (rectangle)); } /** * Leave this region as the intersection between this region and the * specified region. * Corresponds to XIntersectRegion in X11. * * @param region Region to intersect this with. */ public void intersect (Region region) { // Trivial case which results in an empty region if (isEmpty() || region.isEmpty() || !extent_.isOverlapping (region.extent_)) { clear(); return; } // General case combine (region, OPERATION_INTERSECTION); // Update extent updateExtent(); } /** * Leave this region as the intersection between this region and the * specified rectangle. * * @param rectangle Rectangle to intersect this with. */ public void intersect (Rect rectangle) { if (rectangle.isEmpty()) clear(); else intersect (new Region (rectangle)); } /** * Create a new region as the intersection between two specified regions. * * @param r1 First region to intersect. * @param r2 Second region to intersect. * @return Intersection between the two specified regions. */ public static Region intersect (Region r1, Region r2) { Region region = new Region (r1); region.intersect (r2); return region; } /** * Create a new region as the intersection between a region and a rectangle. * * @param region Region to intersect. * @param rectangle Rectangle to intersect with. * @return Intersection between the region and the rectangle. */ public static Region intersect (Region region, Rect rectangle) { if (rectangle.isEmpty()) return new Region(); else return intersect (region, new Region (rectangle)); } /** * Subtract the specified region from this region. * Corresponds to XSubtractRegion in X11. * * @param region Region to subtract from this region. */ public void subtract (Region region) { // Trivial check for non-op if (isEmpty() || region.isEmpty() || !extent_.isOverlapping (region.extent_)) return; // General case combine (region, OPERATION_SUBTRACTION); // Update extent updateExtent(); } /** * Subtract the specified rectangle from this region. * * @param rectangle Rectangle to subtract from this region. */ public void subtract (Rect rectangle) { if (rectangle.isEmpty()) return; subtract (new Region (rectangle)); } /** * Create a new region as the subtraction of one region from another. * * @param r1 Region to subtract from. * @param r2 Region to subtract. * @return Subtraction of the two specified regions. */ public static Region subtract (Region r1, Region r2) { Region region = new Region (r1); region.subtract (r2); return region; } /** * Create a new region as the subtraction of a rectangle from * a region. * * @param region Region to subtract from. * @param rectangle Ractangle to subtract. * @return Subtraction of the two specified regions. */ public static Region subtract (Region region, Rect rectangle) { if (rectangle.isEmpty()) return new Region (region); else return subtract (region, new Region (rectangle)); } /** * Leave the exclusive-or between this and the specified region in * this region. Corresponds to the XXorRegion in X11. * * @param region Region to xor this region with. */ public void xor (Region region) { Region r = (Region) region.clone(); r.subtract (this); subtract (region); union (r); } /** * Leave the exclusive-or between this and the specified rectangle in * this region. * * @param rectangle Rectangle to xor this region with. */ public void xor (Rect rectangle) { if (rectangle.isEmpty()) clear(); else xor (new Region (rectangle)); } /** * Do an exlusive-or operation between two regions and return * the result. * * @param r1 First region to xor. * @param r2 Second region to xor. * @return Result of operation. */ public static Region xor (Region r1, Region r2) { Region region = new Region (r1); region.xor (r2); return region; } /** * Do an exlusive-or operation between a regions and a rectangle * and return the result. * * @param region Region to xor. * @param rectangle Rectangle to xor with. * @return Result of operation. */ public static Region xor (Region region, Rect rectangle) { if (rectangle.isEmpty()) return new Region(); else return xor (region, new Region (rectangle)); } // DEBUG private boolean isExtentCorrect() { int yMin = 0; int yMax = 0; int xMin = 0; int xMax = 0; if (nRectangles_ > 0) { yMin = rectangles_[0]; yMax = rectangles_[1]; xMin = rectangles_[2]; xMax = rectangles_[3]; for (int i = 4; i < nRectangles_ << 2; i+= 4) { if (rectangles_[i+0] < yMin) yMin = rectangles_[i+0]; if (rectangles_[i+1] > yMax) yMax = rectangles_[i+1]; if (rectangles_[i+2] < xMin) xMin = rectangles_[i+2]; if (rectangles_[i+3] > xMax) xMax = rectangles_[i+3]; } } if (extent_.x1 != xMin) { System.out.println ("Extent error x1"); return false; } if (extent_.x2 != xMax) { System.out.println ("Extent error x2"); return false; } if (extent_.y1 != yMin) { System.out.println ("Extent error y1"); return false; } if (extent_.y2 != yMax) { System.out.println ("Extent error y2"); return false; } return true; } // DEBUG private boolean isCoalesced() { if (nRectangles_ < 2) return true; int rEnd = nRectangles_ << 2; int thisBand = 0; while (thisBand != rEnd) { // Find start of next band int nextBand = thisBand; while (nextBand != rEnd && rectangles_[nextBand] == rectangles_[thisBand]) nextBand += 4; if (nextBand == rEnd) return true; // Now we have two consecutive bands. See if they touch. if (rectangles_[thisBand+1] == rectangles_[nextBand+1]) { // Check the x values int thisY = rectangles_[thisBand]; int nextY = rectangles_[nextBand]; int i = thisBand; int j = nextBand; while (j != rEnd && rectangles_[i] == thisY && rectangles_[j] == nextY) { if (rectangles_[i+2] != rectangles_[j+2] || rectangles_[i+3] != rectangles_[j+3]) break; i += 4; j += 4; } if (rectangles_[i] != thisY && (rectangles_[j] != nextY || j == rEnd)) System.out.println ("Coalesce error at Y=" + thisY); } thisBand = nextBand; } return true; } // DEBUG private boolean isConsistent() { boolean isExtentCorrect = isExtentCorrect(); if (!isExtentCorrect) return false; if (nRectangles_ == 0) return true; for (int i = 0; i < nRectangles_; i += 4) { int y1 = rectangles_[i+0]; int y2 = rectangles_[i+1]; int x1 = rectangles_[i+2]; int x2 = rectangles_[i+3]; if (y2 <= y1) { System.out.println ("Rectangle error y2 > y1"); return false; } if (x2 <= x1) { System.out.println ("Rectangle error x2 > x1"); return false; } if (i+4 < nRectangles_) { int y1next = rectangles_[i+4]; int y2next = rectangles_[i+5]; int x1next = rectangles_[i+6]; int x2next = rectangles_[i+7]; if (y1next < y1) { System.out.println ("Band alignment top error"); return false; } if (y1next == y1) { if (y2next != y2) { System.out.println ("Band alignment bottom error"); return false; } if (x1next < x2) { System.out.println ("X bands intersect error"); return false; } if (x1next == x2) { System.out.println ("X bands touch error"); return false; } } } } if (!isCoalesced()) return false; return true; } // DEBUG private void print() { System.out.println ("-------------------------------"); System.out.println (extent_); System.out.println ("nRectangles = " + nRectangles_); for (int i = 0; i < nRectangles_; i++) { System.out.print ("y1=" + rectangles_[i*4 + 0] + ", "); System.out.print ("y2=" + rectangles_[i*4 + 1] + ", "); System.out.print ("x1=" + rectangles_[i*4 + 2] + ", "); System.out.println ("x2=" + rectangles_[i*4 + 3]); } } // DEBUG private void printRects() { for (int i = 0; i < nRectangles_ << 2; i++) { if (i % 4 == 0 && i != 0) System.out.print (" "); System.out.print (rectangles_[i]); if ((i+1) % 4 != 0) System.out.print (','); } System.out.println (); } }